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Abstract. In this study, we developed a data assimilation (DA) system for chemical transport model (CTM) simulations 

using an ensemble Kalman filter (EnKF) technique. This DA technique is easy to implement to an existing system without 

seriously modifying the original CTM, and can provide flow-dependent corrections based on error covariance by short-term 

ensemble propagations. First, the PM2.5 observations at ground stations were assimilated in this DA system every 6 hours 

over South Korea for the period of the KORUS–AQ campaign, from 1 May to 12 June, 2016. The DA performances with the 15 

EnKF were then compared to a control run (CTR) without DA, as well as a run with three-dimensional variational (3DVAR) 

DA. Consistent improvements due to the ICs assimilated with the EnKF were found in the DA experiments with 6 h interval, 

compared to the CTR run, and to the run with 3DVAR. In addition, we attempted to assimilate the ground observations from 

China to examine the impacts of improved boundary concentrations (BCs) on the PM2.5 predictability over South Korea. The 

contributions of the ICs and BCs to improvements in the PM2.5 predictability were also quantified. For example, the relative 20 

reductions in terms of the normalized mean bias (NMB) were found to be about 27.2 % for the 6 h reanalysis run. A series of 

24 hour PM2.5 predictions were additionally conducted each day at 00 UTC with the optimized initial concentrations (ICs). 

The relative reduction of the NMB was 17.3 % for the 24 h prediction run, when the updated ICs were applied at 00 UTC. 

This means that after the application of the updated BCs, an additional 9.0 % reduction in the NMB was achieved for 24 h 

PM2.5 predictions in South Korea. 25 

1 Introduction 

Among many air pollutants, particular attention has been paid to the issue of atmospheric aerosols in East Asia and South 

Korea, where large anthropogenic emissions from growing economic activities cause frequent high episodes of air pollution. 

Several environmental and epidemiological studies have suggested that continual exposure of particulate matter with 

aerodynamic diameter smaller than 2.5 μm (PM2.5) has critical effects on human mortality and morbidity (Pope and Dockery, 30 
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2006; Cohen et al., 2017; Dehghani et al., 2017). Because of the severity of the influences of PM2.5 on human health, the 

accuracy of PM2.5 forecasts has become a central issue in South Korea. To achieve the goal of improving PM2.5 predictability, 

the National Institute of Environmental Research (NIER) of South Korea has implemented daily operational air quality 

forecast since 2014, using the 3-D Chemical Transport Model (CTM) (Chang et al., 2016), while the Korean Ministry of the 

Environment (KMoE) provides real-time observations of PM2.5, together with the concentrations of five other criteria air 35 

pollutants (PM10, O3, CO, SO2, and NO2) in a website named “Air Korea” (https://www.airkorea.or.kr). Although in general, 

the CTM simulation can overcome the spatial and temporal limitations of ground observations, it has large uncertainties that 

are due to imperfect emissions, initial conditions (ICs), boundary conditions (BCs), meteorological fields, and physical and 

photo-chemical mechanisms (Carmichael et al., 2008; Solazzo et al., 2012). 

To improve the accuracy of the short-term predictions via the CTM simulations, chemical data assimilation (DA) has been 40 

proposed as an effective method to reduce the uncertainties in the CTM parameters (e.g., Sandu and Chai, 2011; Zhang et al., 

2012b, a; Bocquet et al., 2015; Menut and Bessagnet, 2019). The chemical DA is a technique for integrating information 

provided by noisy observations and imperfect background estimations from CTM simulations. This integration of the two 

groups of information can theoretically better represent the true state of the chemical atmosphere. The DA techniques have 

been predominantly applied in the Numerical Weather Prediction (NWP) (Kalnay, 2002), such as Optimal Interpolation (OI: 45 

Lorenc, 1981); three-dimensional variational method (3DVAR: Lorenc, 1986; Parrish and Derber, 1992; Rabier et al., 1998); 

four-dimensional variational method (4DVAR: Talagrand and Courtier, 1987; Courtier et al., 1994; Rabier et al., 2000); and 

Ensemble Kalman Filter (EnKF: Evensen, 2003). While the utilization of DA techniques in air quality predictions has been 

limited, these techniques have more recently started to be used for air quality prediction, as well. To date, several DA 

methods have been applied to optimize the uncertainties in model input parameters, including ICs (e.g., Elbern and Schmidt, 50 

2001; Park et al., 2016), BCs (e.g., Roustan and Bocquet, 2006), and emissions fluxes (e.g., Elbern et al., 2007). 

For the past two decades, various DA algorithms have been applied, especially to aerosol prediction studies. Several studies 

have focused on assimilating aerosol observations via OI (Lee et al., 2013; Park et al., 2011; Park et al., 2014; Tang et al., 

2015; Tang et al., 2017; Chai et al., 2017; Lee et al., 2020a); 3DVAR (Pagowski et al., 2010; Liu et al., 2011; Schwartz et al., 

2012; Saide et al., 2013; Jiang et al., 2013; Li et al., 2013; Pang et al., 2018; Ha et al., 2020); and 4DVAR (Benedetti et al., 55 

2019; Morcrette et al., 2009). All the previous studies mentioned above have reported that the OI, 3DVAR, and 4DVAR 

assimilations using satellite-retrieved or ground-based observations led to improved aerosol predictability. 

Even so, each of these DA methods has its own limitations. The OI and 3DVAR usually employ isotropic corrections due to 

a static (i.e., time-invariant) background error covariance (BEC), based on model climatological profiles. Although the 

4DVAR has been reported to show better performance than the OI and 3DVAR, it requires constant development and 60 

maintenance of a tangent linear and adjoint model, which may be a time-consuming and labor-intensive task (Skachko et al., 

2014). On the other hand, the EnKF is relatively easy to implement without requiring a tangent linear or adjoint model, and 

can easily compute flow-dependent BEC from short-term ensemble predictions. This flow dependence of the BEC is one of 

the main reasons behind the possible success of the EnKF method, compared to other DA methods.  Several studies (Tang et 
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al., 2011; Pagowski and Grell, 2012; Yumimoto and Takemura, 2015; Rubin et al., 2016; Yumimoto et al., 2016; Peng et al., 65 

2017; Peng et al., 2018; Lopez-Restrepo et al., 2020) applied the EnKF DA approach to improve the accuracy of air quality 

prediction via assimilating surface and/or satellite observations. For example, Yumimoto et al. (2016) conducted the 

application of the EnKF method with satellite-retrieved aerosol observations to evaluate the effectiveness of the DA on dust 

forecast, and found improved agreement between the predictions and observations. More recently, Peng et al. (2017) 

reported significant improvements in PM2.5 prediction via the joint optimization of ICs and emissions using an EnKF method, 70 

assimilating ground-based PM2.5. 

To optimize the ICs, two studies (Lin et al., 2008; Candiani et al., 2013) carried out assimilation using ground-based aerosol 

observations with different variants of EnKF DA algorithms. However, few studies have applied the EnKF method, 

examining the importance of the BCs. When long-range transport is an important issue, the BCs can be an important 

information. For example, Constantinescu et al. (2007b) and Constantinescu et al. (2007a) extended the EnKF method in a 75 

direction to consider the lateral boundary conditions, and to correct emission flux factors in the assimilation process by 

solving the state parameter estimation problem. Other than this study, no prior study has applied the EnKF method to this 

type of research, particularly with the Community Multiscale Air Quality (CMAQ) model. 

This work is a new endeavor to develop an EnKF DA system for the CMAQ model. The period of the KORUS–AQ 

campaign 2016 (1 May to 11 June, 2016) was chosen to be the target period to test the developed EnKF DA system, since 80 

this period includes well-defined and various types of air pollution episodes, e.g., Yellow dust event, stagnant high PM 

episode, long-range transport events, and rainy days (Peterson et al., 2019; Jordan et al., 2020). To improve the predictability 

of PM2.5 in South Korea for this period, ground-based PM2.5 data were assimilated to update the IC and BC fields. Since this 

is our first attempt to develop an EnKF DA system, we also compared the performances of the EnKF DA system with the 

existing 3DVAR DA algorithm (Lee et al., 2020, in preparation). 85 

We believe that this study can be distinguishable from other EnKF studies in three aspects: (i) The EnKF chemical DA 

system was first developed to assimilate PM2.5 for/with the CMAQ model. In particular, this study intended to enhance the 

accuracy of the PM2.5 prediction via assimilating the ground-observed PM2.5 in South Korea (nearly 150 stations) and China 

(nearly 850 stations). The advantages of the assimilation of the ground-observed PM2.5 are also discussed in the text. (ii) The 

first developed EnKF DA system was applied to the PM2.5 predictions in South Korea, where air quality is frequently 90 

influenced by long-range transport from the Eastern, Northern, and Northeastern parts of China (EC, NC, and NEC in Fig. 1). 

(iii) To evaluate the influences of inflow from China on air quality in South Korea more quantitatively, this study assimilated 

the ground observations from China and South Korea separately. 

The manuscript is organized as follows. Sections 2 describes the methodology of this study, including the DA algorithm, 

CTM, observations, and experimental settings. Section 3.1 discusses the effects of assimilation of ground-based observations, 95 

and then compares the results with those from 3DVAR, based on the reanalysis results. Section 3.2 provides the results of 

improved boundary conditions in one-day prediction simulations. Then, Section 3.3 quantifies the contributions of updating 

ICs and BCs with statistical analysis. Finally, Section 4 concludes the paper. 
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2 Methods 

2.1 Ensemble Kalman Filter (EnKF) 100 

The EnKF is a DA technique, first introduced by (Evensen, 1994), which was an approximate version of the Kalman filter 

(KF) (Kalman, 1960). The basic principle of the KF is to estimate a true state, while minimizing the variances of the state 

with a linear combination of the best estimates of the model and the observations. The optimal state estimated from the KF 

shows less uncertainty than the model predictions and observations. This optimal state is called the ‘analysis’. To apply the 

KF to a non-linear model, a tangent linear model needs to be constructed, as well as its adjoint. However, the EnKF requires 105 

neither a tangent linear model nor its adjoint, since it employs Monte Carlo approximation that can estimate the model error 

covariances using finite ensemble simulations (Evensen, 1994). In particular, the model error covariances used in the EnKF 

technique are flow-dependent, which is the one of the major differences from other DA methods. 

The theoretical foundation of the EnKF method proposed by (Evensen, 2003) is briefly presented below: 

                              𝐱𝑖,𝑘
𝑓

= 𝓜𝐱𝑖,𝑘−1
𝑎 + 𝐪𝑖,𝑘,          𝑖 = 1,2, … , 𝑁 (1) 

 𝐲𝑖,𝑘
𝑜 = 𝐲𝑘

𝑜 + 𝛜𝑖,𝑘
𝑜  (2) 

 𝐱𝑖,𝑘
𝑎 = 𝐱𝑖,𝑘

𝑓
+ 𝐊𝑘(𝐲𝑖,𝑘

𝑜 − 𝐇𝐱𝑖,𝑘
𝑓

) (3) 

 𝐊𝑘 = 𝐏𝑘
𝑓

𝐇𝑇(𝐇𝐏𝑘
𝑓

𝐇𝑇 + 𝐑𝑘)
−1

 (4) 

where, the subscripts 𝑖  and 𝑘  represent the 𝑖 -th ensemble member and the time sequence, respectively. In this set of 110 

equations, the first information to estimate the true state is the forecast state, 𝐱𝑖,𝑘
𝑓

 in Eq. (1). This is the predicted state 

estimated from the model simulation (𝓜) using the updated initial state, 𝐱𝑎, of the previous time step (𝑘 − 1). Here, 𝐱𝑖,𝑘−1
𝑎  

is obtained via DA. The model predictions also include pseudo-random model error, 𝐪, drawn from Gaussian probability 

distribution function (PDF) with zero mean value and covariance, 𝐏𝑓, [𝐪 ~ 𝑁(0, 𝐏𝑓)]. The second item of information is the 

observations, 𝐲𝑖
𝑜 at time 𝑘, which are randomly sampled from the PDF of the observations. The PDF of the observations can 115 

be generated based on error information of the observed values. Each ensemble member is generated with the assimilation of 

perturbed observations (𝐲𝑖
𝑜). The new analyses are then conducted, following Eq. (3). These analyses are used for the next 

ensemble predictions (we term them ‘propagations’). 𝐇  is a linear operator that transforms the model space into the 

observation space. 𝐊 is the Kalman gain matrix at a specific time that includes both model and observation errors shown in 

Eq. (4). The observation error covariance matrix, 𝐑, contains measurement and representation errors, and can be calculated 120 

from the defined observation error, 𝛜𝑜, [ 𝐑 = 𝛜𝑜(𝛜𝑜)𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ]. 𝐏𝑓 is the model error covariance matrix that explains the spatial 

error correlations and error correlations among the model variables. This can be estimated via the ensemble approach 

formulated in Eqs. (5) and (6) shown below: 

 

 
𝐏𝑘

𝑓
𝐇𝑇 ≡

1

𝑁 − 1
∑ (𝐱𝑖,𝑘

𝑓
−  𝒙𝑘

𝑓̅̅ ̅
)

𝑁

𝑖=1

(𝐇𝐱𝑖,𝑘
𝑓

− 𝐇𝐱𝑘
𝑓̅̅ ̅̅ ̅̅

)
𝑇

 (5) 
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 𝐇𝐏𝑘
𝑓

𝐇𝑇 ≡
1

𝑁 − 1
∑ (𝐇𝐱𝑖,𝑘

𝑓
−  𝐇𝐱𝑘

𝑓̅̅ ̅̅ ̅̅
)

𝑁

𝑖=1

(𝐇𝐱𝑖,𝑘
𝑓

− 𝐇𝐱𝑘
𝑓̅̅ ̅̅ ̅̅

)
𝑇

 (6) 

where, the overbar represents the ensemble mean. One of the advantages of the EnKF method is that instead of storing a full 

covariance matrix (𝐏𝑓), the error statistics can be computed by Eqs. (5) and (6) using ensembles of model states with the 125 

assumption that the ensemble mean can be the best estimate of the true state. 

The practical approaches to implement Eqs. (1)–(6) are described as follows. First, through multiple pre-sensitivity tests with 

the considerations of both model performances and computational costs, the total number of the ensembles (𝑁 ) was 

determined to be 40. Although the results of these sensitivity tests are not presented in this manuscript, this number of the 

ensemble members (N=40) has generally been used in many other EnKF applications (e.g., Schutgens et al., 2010; Coman et 130 

al., 2012; Dai et al., 2014). 

Second, the diagonal components in the observation error covariance matrix, R, were calculated based on the assumption 

that no errors are correlated among observation locations. The components of R matrix have been estimated, while 

considering the contributions from measurement and representation errors in several previous studies (e.g., Schwartz et al., 

2014; Peng et al., 2017; Chen et al., 2019).  The application of this method to the observation data has resulted in average 135 

observation errors of around 5 % of the observed values. Therefore for simplicity, in this study the observation errors were 

set to be 5 % of the observations. To generate perturbed observations (𝐲𝑖,𝑘
𝑜 ) at specific time in Eq. (2), 40 random samples 

(𝛜𝑖
𝑜) were drawn from the Gaussian distribution having 0 mean value and standard deviations of 5 % of the observation 

values. 

Since almost no observation locations exactly match the uniform model grid points, an observation operator, 𝐇, is required 140 

to interpolate the model grid-point concentrations to the observation locations. Thus, 𝐇 was constructed as a form of the 

matrix having weighting factors proportional to the inverse distances from the four edge-points of the model grid that 

surrounds the observation location. 

Third, the method to generate ensemble spread for the model (𝐱𝑖
𝑓

) is as follows. In the CTM runs, the state vector, 𝐱, is 

propagated from time, 𝑘 − 1, to time, 𝑘. This can be expressed in the following discrete form: 145 

 𝐱𝑖
𝑓(𝑘) = 𝓜(𝐱𝑖

𝑏(𝑘 − 1), 𝛈𝑖
𝑏(𝑘 − 1)) (7) 

Here, the superscripts 𝑓 and 𝑏 denote forecast and background, respectively; while 𝓜 denotes the model dynamic operator. 

The subscript 𝑘 representing time in the previous section is replaced by (𝑘) here. The state vector 𝐱 defined in our study 

represents the PM2.5 IC to be updated, and 𝛈 represents the model parameters that are perturbed, but not updated through 

EnKF. This indicates that the multivariate covariances among the aerosol species are not considered. In this study, emissions 

and BCs were considered as 𝛈. The approaches to generate initial ensembles, emissions, and BCs via random perturbation 150 

are described below.  

The initial ensembles were created by perturbing the background values of state vector, 𝐱𝑏, at time, t = 0, following the 

equation below: 
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 𝐱𝑖
𝑏(0) = 𝐱𝑏(0) + 𝛿𝐱𝑖(0), 𝑖 = 1, 2, … , 𝑁 (8) 

where, 𝛿𝐱𝑖  represents the 𝑁  number of random samples selected from the Gaussian distribution having zero mean and 

standard deviations of 50 % of the initial concentration at each corresponding model grid. Following this process, we 155 

prepared 40 ensemble members (𝑁 = 40) for the initial ensemble. These 40 initial conditions propagated with time through 

CTM (𝓜) with another perturbed parameter (𝛈). 

For perturbing BCs and emission rates, we took time-correlated noise into account to maintain the temporal evolution of 

those parameters. In addition, avoiding the rapid fluctuations of perturbations is another reason behind the use of time-

correlated noise (colored noise). The method of adding colored noise is the same as that described in (Tang et al., 2011): 160 

 𝛈𝑖
𝑏(𝑘) = 𝛈𝑏(𝑘) + 𝛿𝛈𝑖(𝑘) (9) 

 𝛿𝛈𝑖(𝑘) = 𝛼𝛿𝛈𝑖(𝑘 − 1) + √1 − 𝛼2𝜎ω𝑖(𝑘 − 1), 𝑖 = 1, 2, … , 𝑁 (10) 

 α = exp (−1/𝜏) (11) 

where, 𝛈𝑏  is the background emission fields or BCs, 𝛿𝛈𝑖  denotes the random perturbation samples obtained from the 

previous time step, and 𝛼 represents the smoothing coefficient that is a function of time decorrelation scale (𝜏), for which we 

used 24 h. 𝜔𝑖(𝑘 − 1) is the random sample drawn in the previous time step from the Gaussian distribution having zero mean 

and standard deviation of one. For the standard deviations (𝜎), we used 30 % of boundary inflow concentrations for PM2.5, 

and 50 % of background emission rates. 165 

In theory, an ensemble of infinite model states can provide the most realistic estimations of model error. However, because 

of the limitations of the computational cost, the ensembles with finite size are used to provide an approximation to the error 

covariance matrix. The limited ensemble size causes a sampling error. Small ensemble size may lead to underestimation of 

the prediction error covariances, called ‘filter divergence’ (Houtekamer and Mitchell, 1998), and makes spurious corrections 

at regions remote from the observation locations, called ‘spurious correlation’ (Constantinescu et al., 2007b). To avoid such 170 

filter divergence and spurious correlation, we applied covariance inflation and localization, respectively. The Gaspari–Cohn 

piecewise polynomial (Gaspari and Cohn, 1999) with a horizontal width of 100 km and a vertical width of 2 km was used to 

prevent the spurious correlation by localizing the model error covariances. In addition, the Relaxation-to-Prior-Spread 

(RTPS) inflation (Whitaker and Hamill, 2012) method was applied against the filter divergence, by inflating the ensemble 

spread before and after the DA. 175 

2.2 Three-Dimensional Variational Data Assimilation (3DVAR) 

An analysis state generated by 3DVAR is obtained by minimization of the cost function shown below: 

 𝐽 ≡
1

2
(𝐱𝑘 − 𝐱𝑘

𝑓
)

𝑇
𝐁−1(𝐱𝑘 − 𝐱𝑘

𝑓
) +

1

2
(𝐇𝐱𝑘 − 𝐲𝑘

𝑜)𝑇𝐑𝑘
−1(𝐇𝐱𝑘 − 𝐲𝑘

𝑜). (12) 

Most of the notations in Eq. (12) are the same as those in Eq. (3), except for the time invariant (static) BEC matrix, 𝐁. The 

National Centers for Environmental Prediction (NCEP) Grid-point Statistical Interpolation (GSI) provides the 3DVAR DA 
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algorithm. Based on the GSI version 3.6 (Shao et al., 2016), Lee et al. (2021, in preparation) modified it, making an interface 180 

with the CMAQ model. The National Meteorological Centre (NMC) method (Parrish and Derber, 1992) was used to provide 

the 𝐁 matrix that contains the standard deviations, as well as the vertical and horizontal length scales of the model errors. In 

the NMC method, the model errors are approximated from a set of differences between the model predictions with different 

lengths of time window. We used a total of 42 pairs of 12 and 24 h model predictions for the BEC calculations, following the 

method of Schwartz et al. (2012). Lee et al. (2021, in preparation) describes the details of the 3DVAR method, including the 185 

minimization algorithm, observation operator, and observation error covariances. 

2.3 Numerical Models and Input Data 

In this study, the EnKF DA algorithm was developed for the Weather Research and Forecasting (WRF)-CMAQ modeling 

system. The WRF–CMAQ system was run in off-line mode, which means that the CMAQ model runs were made 

sequentially after the meteorological fields were generated by the WRF model. This section briefly describes the two 190 

numerical models, input fields (e.g., emission and meteorology), simulation domains, and observation data used for the DA.  

The WRF version 3.8.1 (Skamarock, 2008) with the Advanced Research WRF (ARW) dynamical core was used to produce 

meteorological fields for the CMAQ model simulations. The ARW dynamical core employs fully compressible and non-

hydrostatic Euler equations, together with Arakawa-C grid staggering. In the WRF simulations, the Final (FNL) operational 

global analyses data produced by the NCEP (Saha et al., 2010) were used for the ICs and BCs. Temporal and spatial 195 

resolutions of the FNL data are 6 hours and 0.25 degree, respectively. To minimize the uncertainty in the meteorological 

fields, the ground measurements and vertical radiosonde data were also assimilated with 3 and 6 h intervals, respectively, 

with the Newtonian relaxation (or nudging) method (Stauffer and Seaman, 1990). The hourly meteorological fields were 

provided by the WRF model simulations, and they were then converted into CMAQ-ready format via the Meteorology–

Chemistry Interface Processor (MCIP v4.3; Otte and Pleim, 2010). Table 1 summarizes the detailed model configurations of 200 

the WRF model simulations. 

The CMAQ model v5.1 (Byun and Ching, 1999; Byun and Schere, 2006) was used in this study to simulate the atmospheric 

photo-chemistries, aerosol dynamics and thermodynamics, and transport of atmospheric species. The CMAQ runs have two 

domains in accordance with our experimental purposes. The horizontal resolutions of the mother domain (D1) and daughter 

domain (D2) are 27 and 9 km, respectively, with 15 vertical layers, while the model top being at 20 km. Tables 2 and 3 list 205 

the CMAQ model configurations and the domain specifications used in this study, respectively. 

The mother domain (D1) for the CMAQ model simulations covers Northeast Asia including China, the Korean Peninsula, 

and Japan, and the daughter domain (D2) nested in the D1 targets South Korea (refer Fig. 1). With this nesting configuration, 

we intended to examine how the BCs provided by the D1 affect the PM2.5 predictability in the D2. Because the PM2.5 

predictability in South Korea is the focus of this study, most of the experiments were carried out in the D2, while model 210 

simulations over the D1 were used to provide the D2 with BCs. Table 3 summarizes the domain descriptions for the WRF 

and CMAQ model runs. 
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For another important input field into the CMAQ model simulations, emission data were prepared. KORUS v2.0 emission 

fields (Jang et al., 2020) were employed for anthropogenic emissions in the two domains. This emission inventory had also 

supported official CTM simulations for the KORUS–AQ field campaign in 2016. To prepare biogenic emissions, Model of 215 

Emissions of Gases and Aerosols from Nature (MEGAN v2.1; Guenther et al., 2006; Guenther et al., 2012) was run with 

MODIS land cover data (Friedl et al., 2010), together with MODIS-derived leaf area index (LAI) (Myneni et al., 2002; Yuan 

et al., 2011). For the MEGAN model runs, the same meteorological fields generated from the WRF model simulations were 

used. For the considerations of fire emissions, Fire Inventory from NCAR (FINN) was used (Wiedinmyer et al., 2006; 

Wiedinmyer et al., 2011). 220 

The observation data used in the EnKF DA experiments were PM2.5 data obtained from ground stations located in China and 

South Korea. We acquired the PM2.5 data over China from the China urban air quality real-time data release platform 

(http://106.37.208.233:20035) managed by the Chinese Ministry of Ecology and Environment, along with another 

complementary website (http://www.pm25.in). For the PM2.5 data over South Korea, the data were downloaded from the 

National Ambient air quality Monitoring Information System (NAMIS) of Korea (https://www.airkorea.or.kr). The 225 

maximum available observations for PM2.5 throughout the period of KORUS–AQ campaign were 866 and 165 in China and 

South Korea, respectively. Figure 1 shows the locations of those ground stations in D1 and D2. 

2.4 Experimental Setup 

For control run (CTR) without DA, hourly predictions were conducted in D1 by the CMAQ model simulations to generate 

the BCs for D2. After that, using the BCs we implemented 24 h CMAQ predictions over D2 each day from 25 April to 12 230 

June, 2016, with the first 5 days for spin-up period, and the 6th day for adapting times for the EnKF DA. To provide the 

meteorological inputs into the CMAQ model runs over the D2, the WRF model simulations initialized each day 12 h before 

the CMAQ initialization. In this case, the first 12 h simulations were regarded as spin-up times of the meteorological model. 

To initialize the next 24 h predictions, the CMAQ model utilized the last hour outputs from the previous 24 h predictions. 

The initial ensemble of 40 runs were made, based on the CTR output obtained at 00 UTC on 30 April by perturbing ICs, as 235 

described in Sect. 2.1. The ensemble propagations of the CMAQ model simulations started at 00 UTC on 30 April. The DA 

interval for re-analysis purpose was determined to be 6 h. At the end of the first 6 h prediction (or propagation) of this initial 

ensemble, the first EnKF DA of PM2.5 was conducted at 06 UTC on 30 April, and the updated initial fields from the EnKF 

DA are termed the ‘analysis ensemble’ (𝐱𝑖,𝑘
𝑎 ). These analysis states were again propagated until the next EnKF DA step (12 

UTC), and were then used as the background state (𝐱𝑖,𝑘+1
𝑓

) in the next DA step (Eq. 3). Following this process, the analysis–240 

prediction cycle was repeated in the DA sequences to correct the ICs using the EnKF method. Note that the last DA was 

carried out at 18 UTC on 11 June, and the first three cycles were considered as an adapting time for EnKF. Consequently, 

the analysis–prediction outputs acquired from the 4 times cycles a day are considered as re-analysis run (‘ANL’), rather than 

predictions. Meanwhile, 24 h predictions (i.e., 24 h DA interval) were also carried out every day, starting from 00 UTC on 
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01 May to 11 June, with the mean sate of the analysis fields (𝐱𝑎). A total of 42 day predictions are performed for the 245 

prediction run (‘PRD’) in this study. Figure S1 of the Supplementary Information (SI) shows a schematic of these prediction 

cycles. 

In addition to the CTR run, the two experiments labelled DA_ic (Fig. 2a) and DA_icbc (Fig. 2b) were also made over South 

Korea (D2). In both the DA_ic and DA_icbc runs, ground-level PM2.5 collected in the D2 were assimilated to update the ICs. 

The only difference between the two experiments is the process of acquiring the BCs. In the DA_ic experiment, the BCs 250 

were obtained from the CTR run over the D1, while in the DA_icbc experiment, the BCs were obtained from the runs with 

the EnKF DA using ground measured PM2.5 collected in China. The technical methods to run the ANL and PRD simulations 

were the same in both the DA_icbc and DA_ic experiments. 

In the DA_ic experiment, we updated only ICs, while in the DA_icbc experiment, we updated both the ICs and the BCs. The 

goals of this experimental setup are to make it possible to evaluate how much and to what degree the EnKF DA technique 255 

could enhance the PM2.5 prediction skills, and to separately estimate the contributions of the improved ICs and BCs to the 

predictabilities of PM2.5 over South Korea. 

3 Results and Discussion 

3.1 Impact of the improved initial fields 

Figure 3 shows the daily variations of surface PM2.5 from 1 May to 12 June, 2016 (KORUS–AQ period). In Fig. 3, the 260 

observations (OBS), denoted by open circles, were obtained by averaging all the ground PM2.5 available in South Korea (we 

call this the “aggregation plot”). The simulation results (CTR, ANL with the 3DVAR, and ANL with the EnKF) were also 

calculated by averaging the model outputs at the corresponding observation locations. Figure 3 shows that the control run 

(CTR) without DA (solid blue line) tended to consistently underestimate the daily averaged PM2.5 throughout the simulation 

period. The ANL simulation with the EnKF (solid red line) showed the best agreement with the observations. The 265 

performances of the EnKF are also found to be better than those of the 3DVAR (dashed purple line). 

Figures 4(a) and (b) present the horizontal distributions of surface PM2.5 for background and analysis fields at a specific 

EnKF DA sequence, respectively. Here, the “analysis field” indicates the initial concentration fields updated by the EnKF 

method. Figures 4(a) and (b) also plot the observed PM2.5 used in the DA with the same color-scale. Figure 4(c) gives the 

analysis increments representing the extent of the corrections of PM2.5 by the EnKF data assimilation. Again, the background 270 

fields tended to underestimate the PM2.5 over the inland areas. As discussed in Sect. 2.4, Fig. 4(b) was obtained using an 

average of 40 analysis ensembles. It can be seen how the estimated background error covariance with a short-term ensemble 

propagation could correct the model background by assimilating observations. In a relatively isolated ground station, such as 

Jeju Island (the location is shown in Fig. 1), the analysis increments occurred largely in the down-wind area (Fig. 4c). This 

provides a clear example of flow-dependent correction of the EnKF technique. 275 
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Figure 5 presents the average diurnal variations generated by aggregating the PM2.5 data during 42 days from all the 

observation sites. The vertical bars indicate one standard deviation of the averaged samples. Figure 5 shows a clear pattern of 

the results from each simulation showing distinct diurnal variations. This pattern appears to be caused mainly by the changes 

in meteorological fields during the day. During daytime, relatively high mixing height due to the thermal and mechanical 

development of boundary layers could lead to decreased PM2.5 within the boundary layers. In contrast, after sunset, PM2.5 280 

started to increase, because the mixing height became shallow, due to the stable atmospheric conditions caused by sunset, as 

well as the weak wind speeds. This diurnal pattern was also found in the observation data, but their variations are weaker 

than those from the model simulations. The CTR experiment again consistently underestimated the diurnal PM2.5 throughout 

a day. However, quite good agreement with the observed PM2.5 was found in the ANL simulations with the EnKF (solid red 

line). Focusing on the mean values only at each DA time (00, 06, 12, and 18 UTC), the updated concentrations for the 285 

3DVAR simulations (purple triangles) are always closer to the observations than those for the EnKF simulations (red 

triangles). This indicates that the 3DVAR used larger model errors with higher uncertainties than those of the EnKF, when 

the DA process was carried out. However, the EnKF showed better performance than the 3DVAR simulations in the 

following time, especially during the daytime (e.g., 01 UTC to 06 UTC, and 06 UTC to 12 UTC), although its correction 

strength by assimilation is lower than the 3DVAR. We believe this is because the flow-dependent characteristics of model 290 

errors in the EnKF technique improve the model fields more realistically than those in the 3DVAR.  In contrast, the 3DVAR 

uses a “static” climatological BEC, which usually represents a semi-Gaussian distribution. The better results from the EnKF 

method (than the 3DVAR method) can also be attributed to the realistic considerations of vertical mixing within the 

boundary layer in the BEC (Pagowski and Grell, 2012). More sophisticated comparisons in the configurations, such as error 

variances, observation operator, and vertical length scale of the BEC, are necessary in future study for a direct comparison of 295 

the two DA algorithms. To more quantitatively evaluate the performances of the 3DVAR and the EnKF techniques, Table 4 

also summarizes the statistical metrics based on the reanalysis outputs (ANL). Section 3.4 below discusses the quantitative 

evaluation in more detail. 

3.2 Impact of the improved boundary conditions 

In the previous section, we examined the effects of the initial fields (the DA_ic experiment) in South Korea. The influences 300 

of the updated ICs tend to quickly disappear with time over the relatively small domain (D2), particularly when atmospheric 

flows are fast. In this section, we conducted additional assimilation with the ground observations from China in the D1, in 

addition to the data assimilation with ground observations from South Korea (the DA_icbc experiment). The DA_ic and 

DA_icbc experimental results were again compared in South Korea, which is our main domain of interest. Although the 

prediction strategy (refer Fig. S1 of the SI) was the same in the DA_icbc experiment, only PRD runs are shown in this 305 

section for simplicity. 

Figure 6 shows the averaged PM2.5 used for the four lateral boundaries of the domain 2 in both the DA_ic and DA_icbc 

experiments. At the four lateral boundaries, PM2.5 was averaged over 6 weeks, and Fig. S2 of the SI shows the south, east, 
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north, and west boundaries of domain 2 (D2). The color-filled contours on the vertical planes correspond to longitudinal 

direction from west to east (latitudinal direction from south to north), and vertical direction for the southern and northern 310 

(western and eastern) boundaries of domain 2. Together with the PM2.5, Fig. 6 also plots the mean wind velocity across the 

four boundaries, to show the inflow into the D2 and outflow from the D2 with positive (solid) and negative (dashed) contour 

lines, respectively. In the upper panels of Fig. 6, western part of the north boundary and northern part of the west boundary 

show relatively high PM2.5 (> 15 μg m−3) within 1 km altitude. Although long-range transport of air pollutants from China to 

South Korea sometimes occurs in the upper layers, the averaged PM2.5 at the northwest boundaries were high within the 315 

boundary layer. We should also note in Fig. 6 that the northwestern boundary had a strong inflow that could result in high 

PM2.5 in the D2. 

The middle and bottom panels of Fig. 6 show that at all the boundaries, the DA_icbc experiment exhibited higher PM2.5 than 

the DA_ic experiment. This indicates that the control simulation without assimilation (CTR) over the D1 under-calculated 

PM2.5 in China. Figure 6c shows that there are small changes in PM2.5 above 2 km altitude, while the changes become larger 320 

within the boundary layers. To quantify the amounts transported into and out of the D2, we calculated the PM2.5 fluxes by 

multiplying PM2.5 by wind velocities, and then averaged them over the simulation period (refer Fig. S3 of the SI). The cross-

sectionally averaged PM2.5 flux at the west boundary increased from 19.2 to 26.6 μg m−2 s−1 from the DA_ic to DA_icbc 

experiments. This indicates that larger amounts of PM2.5 were actually transported long-distance from China to South Korea, 

mainly through the northwestern boundary of domain 2 during the KORUS–AQ period. 325 

A ground station where the influences of the boundary conditions can be checked is Baekryeong-do, South Korea (shown 

with star symbol in Fig. 1). The reason is that Baekryeong-do is located at the west-end of domain 2 (very near the western 

boundary of the D2), and is also minimally affected by local inland emissions (i.e., there are no major industries, and only a 

small population living on the island). Figure 7a shows the averaged diurnal variations of PM2.5 at Baekryeong-do evaluated 

from D1. Hence, the results with (solid red line with triangles) and without (blue dashed line with rectangles) the DA can be 330 

perceived as the boundary conditions in D2 for the DA_icbc and DA_ic experiments (refer Fig. 2), respectively. The 

averaged diurnal variation of PM2.5 without the DA is in the range between 10 and 20 μg m−3, which is approximately 10 

μg m−3 lower than the observed PM2.5. However, when the assimilation of the observations in China was applied, almost the 

same levels of PM2.5 as the observations were reproduced. We found that the 24 hour predictions that were evaluated at the 

same location in D2 were greatly improved (Fig. 7b). This is confirmed by the results from the DA_icbc experiment in Fig. 335 

7b. Since the observed PM2.5 at the Baekryeong-do site were assimilated to improve the initial conditions in both the DA_ic 

and DA_icbc experiments, the predictions started from the similar PM2.5 to the observed PM2.5. However, the predictions for 

the DA_icbc experiment agreed greatly with the observed PM2.5 due to the application of accurate boundary conditions, 

while the prediction for the DA_ic experiment rapidly converged to the CTR run, because of the same boundary conditions 

as the CTR run. Another fact we should note is that analysis increments by assimilating Baekryeong-do data for the DA_icbc 340 

experiment in D2 would be minimal, as the background PM2.5 was already close to the observed PM2.5 because of the 

updated boundary conditions. 
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Figure 8 presents the daily variations of PM2.5 like in Fig. 3, except for the results from the “PRD runs” for the DA_ic and 

DA_icbc experiments. The PRD runs are technically the same as the ANL runs except for the prediction lead time (of 24 and 

6 hour, respectively). Again, significant improvements in the DA_ic and DA_icbc experiments were found, compared to the 345 

results from the CTR run. When the dominant synoptic wind directions were southerly or easterly (e.g., on June 2 to 4), there 

were only small differences between the DA_icbc and DA_ic experiment, and thus limited improvements were achieved. 

Similarly, no improvements for updating the boundary condition in the DA_icbc experiment were found during the 

precipitation days on May 10 and 24, and on June 1 and 6. However, large improvements could be made, when the Yellow 

dust event occurred during May 4 to 7, and when the westerly winds prevailed over the D2 between May 20 and 27 (except 350 

on 24 May). Therefore, to improve PM2.5 predictability in South Korea, it is of great importance to provide the appropriate 

boundary conditions by assimilating the ground observation data in the upwind area (i.e., EC, NC, and NEC region, refer Fig. 

1). 

To evaluate the PM2.5 predictability in South Korea, Fig. 9 also displays the averaged diurnal variations, and compares the 

prediction runs (PRD) for the two experiments, DA_ic and DA_icbc. The performances of 24 hour predictions were 355 

launched every 00 UTC. The predicted PM2.5 for the PRD runs show better performances than the CTR run with reduced 

errors and biases, although the biases are larger than those for the ANL runs (shown in Fig. 3). Again, the averaged diurnal 

PM2.5 for the DA_icbc experiment is closer to the observations than that for the DA_ic experiment. This is because the 

enhanced boundary information was repeatedly provided at the everyday prediction sequence. Also, the negative biases 

found in the DA_ic experiment were greatly alleviated with the DA_icbc experiment, even if the same emissions and 360 

meteorological fields were applied for the 24 hour predictions. The immediate improvements could be seen immediately 

after the predictions started at 00 UTC. As time progressed, the biases and errors were also propagated. However, the biases 

in the DA_icbc experiment became about half of those in the DA_ic experiment. Note also that the slightly over-predicted 

PM2.5 for the DA_icbc experiment between 18 and 23 UTC were caused by insufficient information about vertical mixing 

during night-time. Simulated nocturnal boundary layer heights were lower than real boundary layer heights. This is a critical 365 

problem in meteorological modeling, and has been discussed in many previous publications (Eder et al., 2006; Hong, 2010). 

3.3 Statistical Evaluations: Quantification of contributions by updating the initial and boundary conditions 

Table 4 summarizes the statistical performance metrics that we calculated to evaluate the model performances. Table S1 of 

the SI gives the mathematical definitions for the performance metrics. The average PM2.5 over the entire simulation period 

was 27.9 μg m−3, and the CTR run produced the under-estimated PM2.5 of 17.9 μg m−3. The application of the updated 370 

initial conditions (the DA_ic experiment) improved the average PM2.5, which was 25.4 and 22.9 μg m−3 for the ANL and 

PRD runs, respectively. The results for the DA_icbc experiment were even closer to the observations than those of the 

DA_ic. The average PM2.5 from the ANL and PRD runs for the DA_icbc experiment was 26.5 and 25.5 μg m−3, respectively. 

All the statistical metrics for the DA_icbc experiment were improved, compared to the DA_ic experiment. Focusing on the 

PRD runs, the IOA increased significantly from 0.610 to 0.665 (for the DA_ic experiment), and then to 0.685 (for the 375 
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DA_icbc experiment). The average RMSE was reduced from 20.8 to 18.3 μg m−3 for the DA_icbc experiment, while it was 

18.8 μg m−3 for the DA_ic experiment. This small reduction in the averaged RMSE between the DA_ic and the DA_icbc 

experiments can be attributed to the over-prediction of PM2.5 during the night-time, as Fig. 9 shows. On the other hand, 

remarkable improvements were found in the MBs. In the DA_ic experiment, the averaged MB was drastically reduced from 

-10.2 to -5.3 μg m−3. Another large reduction in the averaged MB was found from -5.3 to -2.5 μg m−3 from the DA_ic 380 

experiment to the DA_icbc experiment. The normalized MB (NMB) was also reduced by 17.3 % in the DA_ic experiment 

from 36.2 % for the CTR run. In addition, the DA_icbc experiment led to another considerable decrease in the NMB by 

9.0 %, compared to the DA_ic experiment. 

To investigate the quantitative contributions of the initial and boundary conditions to the model performances, we calculated 

the ‘rate of improvement (ROI)’ with respect to the PRD results (see Table 5). The ROIs are defined by the ratios of 385 

enhanced (R and IOA) or reduced (RMSE and MB) amounts of the corresponding statistic metrics to those calculated from 

the CTR run. Based on the ROI for the DA_ic and DA_icbc experiments, we can estimate the ROIs associated with the 

initial correction (the DA_ic) and the boundary correction (the DA_bc). The ROIs for the DA_ic and DA_icbc experiments 

were 10.2 and 15.0 % in terms of R (Pearson’s correlation coefficient), respectively. Therefore, the estimated ROI due to the 

DA_bc might be 4.8 %. The contributions in MB can also be estimated quantitatively in terms of the ROIs. Updated 390 

boundary conditions resulted in an improvement of 27 % in MB in terms of ROI. In the case of the applications of the DA_ic 

and the DA_bc, the ROIs were 9.0 and 3.3 % increase in terms of IOA, and 9.6 and 2.4 % decrease in terms of RMSE, 

respectively. 

4 Conclusions 

To improve PM2.5 prediction in South Korea, we developed and applied an EnKF data assimilation method to the WRF–395 

CMAQ modeling system. For the data assimilation, we employed two groups of ground observations from China and South 

Korea. We found that when we updated the ICs via the EnKF data assimilation, the PM2.5 predictions in South Korea could 

be greatly improved. In comparative analysis between EnKF and 3DVAR, the EnKF technique showed better performance 

than the 3DVAR in short-term PM2.5 predictions. These results indicate that the BEC used in this study can realistically 

reflect current states of the atmosphere, particularly in the boundary layer. 400 

This study also highlighted the importance of updating boundary conditions to further enhance the PM2.5 predictability over 

South Korea. Long-range transport from China directly impacts the air quality in South Korea, particularly during high PM2.5 

episodes. Since there are only restrictive effects of the DA with ground observations inside South Korea on improvement in 

analysis fields and predictions, we updated the inflow boundary conditions via the EnKF DA that uses the observations in 

China. Comparison of the studies with and without the updated BCs suggested that improved initial conditions (the DA_ic 405 

experiment) reduced the NMBs from -36.2 to -18.9 % compared to the control run, and even further updating the initial and 

boundary conditions (the DA_icbc experiment) improved the NMBs from -36.2 to -9.9 % in terms of the 24 hour PM2.5 
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prediction over South Korea. In terms of IOA (in terms of MB), the contributions of updating the ICs and BCs to 24 hour 

predictability were estimated to be 73 and 27 % (63 and 37 %), respectively. However, caution should be exercised, in that 

these estimations are made only for a specific period (KORUS–AQ campaign), and can vary with atmospheric conditions. A 410 

longer period test is needed for general quantification. 

Recently, the EnKF has also been used to assimilate satellite-retrieved aerosol observations (e.g., Sekiyama et al., 2010; 

Schutgens et al., 2010a and 2010b; and Yin et al., 2016). Other groups also used the EnKF method for a joint optimization of 

initial conditions and emission scaling factor (e.g., Tang et al., 2011; Peng et al., 2017 and 2018). Given that we have shown 

that the consideration of the transboundary air pollution is of significance in the PM2.5 predictions over South Korea, 415 

assimilating aerosol optical depth (AOD) data from the satellites over the Yellow Sea (where no ground observations are 

available) is expected to provide the PM2.5 prediction system with important information. 

Throughout this study, the DA method of ‘perturbed observation EnKF’ (first proposed by Evensen, 2003) was employed. 

However, there are some popular variants of the EnKF method that obviate the need to perturb observations, such as 

Ensemble Square Root Filter (EnSRF; Whitaker and Hamill, 2002), Ensemble Adjustment Kalman Filter (EAKF; Anderson, 420 

2001), and Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007). Two of these EnKF variants are also being 

tested to alleviate the sampling errors in the observation ensemble, and the results will also be reported in the near future in 

the context of further development of the ensemble data assimilations and the Korean air quality prediction system. 
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Table 1. WRF model configurations selected in this study. 

Parametrization WRF option 

Planetary boundary layer Yonsei University (YSU) scheme (Hong et al., 2006) 

Microphysics WRF single-moment 6-class (WSM6) scheme (Hong and Lim, 2006) 

Cumulus parameterization Grell–Freitas ensemble scheme (Grell and Freitas, 2014) 

Land surface model Noah–MP (Niu et al., 2011; Yang et al., 2011) 

Shortwave/longwave options 
Rapid Radiative Transfer Model for Global Circulation Models (RRTMG) 

(Iacono et al., 2008) 

Surface layer options revised MM5 scheme for Jiménez et al. (2012) 

 740 

Table 2. CMAQ model configurations selected in this study. 

Parametrization CMAQ option 

Aerosol thermodynamics AERO6 (Appel et al., 2013) 

Gas-phase Chemistry SAPRC07tc (Hutzell et al., 2012) 

Chemistry solver Euler Backward Iterative (EBI) chemistry solver (Hertel et al., 1993) 

Dry deposition M3DRY (Pleim and Xiu, 2003) 

Horizontal advection Yamo global mass-conserving scheme (Yamartino, 1993) 

Vertical advection Vwrf-Piecewise Parabolic Method (Colella and Woodward, 1984) 

Horizontal diffusion Multiscale (Louis, 1979) 

Vertical diffusion Asymmetric Convective Model, version 2 (ACM2; Pleim, 2007a, b) 

 

Table 3. Domain descriptions for WRF and CMAQ models. 

Model WRF v3.8.1 CMAQ v5.1 

Domain D1 D2 D1 D2 

Horizontal grids 153×114 109×109 144×105 100×100 

Grid resolution 27 km 9 km 27 km 9 km 

Vertical layers 33 layers (top: 50 hPa) 15 layers (top: 20 km) 

ICs and BCs NCEP FNL 1° data Predefined clean profiles 

Target periods 00 UTC 01 May 2016 – 00 UTC 12 June 2016 
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Table 4. Statistical metrics for the experiments of DA_ic and DA_icbc. Experiments were evaluated for the 6 hourly assimilated 

analysis run (ANL), and for the one-day prediction run (PRD). The ANL run using 3DVAR in the DA_ic experiment is included 

for comparison. 

Experiments 

and simulations 

MEAN* 

(𝛍𝐠 𝐦−𝟑) 
R  IOA  

RMSE 

(𝛍𝐠 𝐦−𝟑) 

MB 

(𝛍𝐠 𝐦−𝟑) 

NMB 

(%) 

CTR 17.9 0.421 0.610 20.8 -10.2 -36.2 

DA_ic 

ANL 

(3DVAR) 
22.1 0.618 0.761 15.6 -5.8 -20.8 

ANL 25.4 0.646 0.795 14.3 -2.5 -9.0 

PRD 22.9 0.464 0.665 18.8 -5.3 -18.9 

DA_icbc 

ANL 26.5 0.656 0.804 14.1 -1.4 -5.1 

PRD 25.5 0.484 0.685 18.3 -2.5 -9.9 

* Mean concentration in observed data is 27.9 𝛍𝐠 𝐦−𝟑.  
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Table 5. Rate of improvement (ROI) by EnKF data assimilation in one-day predictions. The ROI is the ratio of the enhanced (R 

and IOA) or reduced (RMSE and MB) statistical metrics to those for CTR simulation. The ROI by the updating boundary 

conditions (DA_bc) can be estimated from the difference between that obtained by the DA_ic and DA_icbc experiments. 

 DA_ic DA_icbc Estimated DA_bc 

R 10.2 % 15.0 % 4.8 % 

IOA 9.0 % 12.3 % 3.3 % 

RMSE 9.6 % 12.0 % 2.4 % 

MB 48 % 75 % 27 % 
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Figure 1. Simulation domains with nested modeling. D1 and D2 represent mother and daughter domain, respectively. The 

locations of ground stations in China (D1) and South Korea (D2) are marked on the maps with green dots. In the D1 (left), 

Northeast China (NEC), North China (NC), and East China (EC) regions that frequently influence air quality in South Korea are 

grouped with olive, violet, and coral colors, respectively. The star symbol with red color indicates Baekryeong-do observatory, 760 
where the evaluation of boundary inflow was made. Jeju Island in D2 (right) is an ideal location to see the flow-dependent 

correction by the EnKF DA. The total number of available stations used in EnKF data assimilation is also shown in both domains. 
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(a) DA_ic  

 

(b) DA_icbc  

 

Figure 2. Schematic flow-chart for the experiments performed in this study. To evaluate PM2.5 predictability in South Korea, (a) 

DA_ic experiment updates the initial conditions (ICs) only within D2, while (b) DA_icbc experiment provides D2 with updated 765 
boundary conditions (BCs) via assimilating ground observations in China (CHN obs.), and also updating the I.C.s for D2 using 

Korean ground observations (KOR obs.). 
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Figure 3. Daily variations of surface PM2.5 for DA_ic experiment. Observations (OBS) are represented by black solid line with 770 
open circles. Model results for control (CTR) run without DA, for reanalysis (ANL) run with 3DVAR, and reanalysis ANL with 

EnKF are plotted by blue solid line, purple dashed line, and red solid line, respectively. Values were prepared from daily averages 

at all the observation sites in South Korea (D2). 
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(a) Background (b) Analysis (C) Analysis increments 

   

Figure 4. Snap shots of the horizontal distributions of PM2.5 before ((a) background) and after ((b) analysis) the application of 775 
EnKF technique at 00 UTC on 22 May, 2016. The observed concentrations are also shown on the map with the same color-scales as 

contour values. In the right-hand panel (c), the analysis increments are also presented, and flow-dependent corrections can be 

visible when the wind vectors are overlaid with the analysis increments. The big island in the Southern Sea of the Korean 

Peninsula is Jeju Island, where the flow-dependent behavior can be noticed. 
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Figure 5. Average diurnal variations of PM2.5 aggregated from all ground stations in South Korea (D2) for the DA_ic experiment. 

The color labels are the same as in Fig. 1, except for symbols. The error bars with gray, cyan, purple, and pink indicate one 

standard deviation (±𝛔) for OBS, CTR, ANL by 3DVAR, and ANL by EnKF simulations, respectively. 
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(a) DA_ic 

 

(b) DA_icbc 

 

(c) Difference (DA_icbc – DA_ic) 

 

Figure 6. Averaged PM2.5 distributions in the four lateral boundaries of the domain 2 (D2: south, east, north, and west from the 

left to the right, refer Fig. S3 of the SI). Each panel includes black contour lines that explain the inflow (solid lines) and outflow 

(dashed lines) wind vector with 1 ms-1 interval. The thick black lines indicate zero wind speed. In (a) DA_ic and (b) DA_icbc, the 

averaged lateral boundary concentrations are provided into D2 without and with the EnKF data assimilation in China (D1), 

respectively. The increments in DA_icbc experiment are also presented in the bottom panel (c). Note that the y-axis for altitude is 790 
presented in log-scale, to emphasize the results below the boundary layer. 
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(a) Baekryeong-do site in D1 

 

 

(b) Baekryeong-do site in D2 

 

Figure 7. Averaged diurnal variations of PM2.5 aggregated at Baekryeong-do site from the results obtained in (a) D1, and (b) D2. 

The line colors and symbols are the same as in Fig. 5, except for the prediction runs in D2, which are plotted by dashed and solid 

green lines for DA_ic and DA_icbc experiments, respectively, in panel (b). 795 
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Figure 8. Daily averaged variations of PM2.5. The lines and colors are the same as in Fig. 3, except for the one-day prediction runs 

(PRD). One-day predictions only with updated initial condition (DA_ic), and with initial and boundary conditions (DA_icbc), are 

presented by the dashed and solid green lines, respectively. 800 
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Figure 9. Averaged diurnal variations of PM2.5 aggregated from all ground stations in South Korea (D2). The color and symbols 

are the same for observations (OBS) and control run (CTR) as in Fig. 5. One-day predictions only with updated initial condition 

(DA_ic), and with initial and boundary conditions (DA_icbc), are presented by dashed and solid green lines, respectively. One 805 
standard deviation (𝛔) is also plotted for each case using vertical bars. The left and right vertical bars indicate ±𝛔 for DA_ic and 

DA_icbc, respectively. 
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